domingo, 10 de junio de 2012

METODOS DE LA ENERGIA Y CANTIDAD DE MOVIMIENTO

CINEMATICA DE PARTICULAS: METODOS DE LA ENERGIA Y LA CANTIDAD DE MOVIMIENTO

Impulso y cantidad de movimiento.- En un choque obra una gran fuerza en cada una de las partículas que chocan durante un corto tiempo; un bat que golpea una pelota de béisbol o una partícula nuclear que choca con otra son ejemplos típicos. Por ejemplo, durante el intervalo muy corto de tiempo que el bat está en contacto con la pelota se ejerce sobre esta una fuerza muy grande. Esta fuerza varía con el tiempo de una manera compleja, que en general no se puede determinar. Tanto la pelota como el bat se deforman durante el choque. Fuerzas de este tipo se llaman fuerzas impulsivas.

Supongamos que la curva de la figura 2 muestra la magnitud de la fuerza que realmente obra en un cuerpo durante un choque. Supongamos que la fuerza tiene una dirección constante. El choque comienza en el tiempo t1 y termina en el tiempo t2, siendo la fuerza 0 antes y después del choque.

La integral de una fuerza en el intervalo durante el cual obra la fuerza se llama impulso de la fuerza. Por consiguiente, el cambio en la cantidad de movimiento de un cuerpo sobre el cual obra una fuerza impulsiva es igual al impulso. Tanto el impulso como la cantidad de movimiento son vectores y ambos tienen las mismas unidades y dimensiones.

La fuerza impulsiva representada en la figura 2 se supone que es de dirección constante. El impulso de esta fuerza I Fdt. está representado en magnitud por el área de la curva fuerza-tiempo.

Fenómenos de choque.- Consideremos ahora un choque entre dos partículas, tales como partículas de masa m1 y m2, durante el breve choque, esas partículas ejercen grandes fuerzas una sobre la otra. En cualquier instante F1 es la fuerza ejercida sobre la partícula 1 por la partícula 2 y F2 es la fuerza ejercida sobre la partícula 2 por la partícula 1. En virtud de la tercera Ley de Newton esas fuerzas son iguales en cualquier instante, pero en sentido contrario. además, cada fuerza obra durante el mismo período de tiempo, est es, el tiempo del choque,

dt = t2 - t1

Dos “partículas” m1 y m2 en choque, experimentan fuerzas iguales y puestas en la dirección de la línea de sus centros, acuerdo con la tercera ley de Newton.

Por consiguiente, en ausencia de fuerzas externas, la cantidad de movimiento total del sistema es constante. Las fuerzas impulsivas que obran durante el choque son fuerzas internas que no tienen efecto en la cantidad de movimiento total del sistema.

Si consideramos después un sistema de 3, 4, o, de hecho de un número cualquiera de partículas que sufren colisiones entre si por una simple extensión del método usado para dos partículas, podemos demostrar que la cantidad del movimiento del sistema se conserva. El único requisito es que no obren fuerzas externas sobre el sistema.

Ahora el estudiante se preguntará por qué los fenómenos de choque se han discutido en función del impulso. De echo, el principio de conservación de la cantidad de movimiento ya se ha deducido antes. Todo lo que debemos reconocer para sistemas en los cuales ocurren colisiones, es que las fuerzas de choque son fuerzas internas, y para tales sistemas surge inmediatamente el principio de la conservación.

Una razón para considerar la naturaleza de impulso de un choque es que ilustra a una clase importante de problemas sobre como ocurre la conservación de la cantidad de movimiento. Sin embargo, una razón más importante es que nos permite explicar por qué casi siempre suponemos conservación de cantidad de movimiento durante un choque, aun cuando obren fuerzas externas sobre el sistema.

Cuando un bat le pega a una pelota de béisbol un bastón de golf le pega a una pelota de golf, o una bola de billar le pega a otra es evidente que obran fuerzas externas sobre el sistema; por ejemplo, la gravedad o la fricción ejercen fuerzas sobre esos cuerpos; esas fuerzas externas pueden no ser las mismas sobre cada cuerpo que choca, ni necesariamente se anulan por otras fuerzas externas durante el choque y suponer conservación de la cantidad de movimiento con tal que, como es casi siempre cierto,

Las fuerzas externas sean insignificantes en comparación con las fuerzas impulsivas de choque. Como resultado de ello, el cambio de cantidad de movimiento de una partícula que sufre un choque, cambio que provenga de una fuerza externa, es insignificante en

En la figura a la izquierda se puede observar,

que durante un choque la fuerza impulsiva, Fimp es

generalmente mucho mayor que cualquiera de las

fuerzas externas Fext que puedan sobre el sistema.

Comparación con el cambio de cantidad de movimiento de una partícula producido por la fuerza impulsiva de choque.

Ejemplo

El péndulo balístico se usa para medir la velocidad de las balas. El péndulo, que consiste de un gran bloque de madera de masa cuelga verticalmente de dos cuerdas. Una bala de masa m, que avanza con una velocidad horizontal u, choca contra el péndulo y se incrusta en él. Si el tiempo de choque (el tiempo requerido para que la bala quede en reposo con respecto al bloque) es muy pequeño en comparación con el tiempo de oscilación del péndulo, las cuerdas que lo sostienen quedan aproximadamente verticales durante el choque. Por consiguiente no obra ninguna fuerza externa horizontal sobre el sistema durante el choque y se conserva la componente horizontal de la cantidad de movimiento. La velocidad del sistema después del choque es mucho menor que la de la bala antes del choque. Esta velocidad final se puede determinar fácilmente de modo que la velocidad original de la bala se puede calcular mediante el principio de la conservación de la cantidad del movimiento.

La cantidad de movimiento inercial del sistema es la de la bala mas la cantidad de movimiento del sistema apenas terminado el choque, de modo que:

Una vez que termina el choque, el péndulo y la bala oscilan hasta una altura máxima y, en donde la energía cinética que quedó después del impacto se convierte en energía potencial gravitacional.

Entonces, aplicando el principio de la conservación de la energía mecánica para esta parte del movimiento, obtenemos:

Por consiguiente, se puede determinar la velocidad inicial de la bala si se miden "m" "M" "y".

La energía cinética de la bala inicialmente es 1/2mu2 y la energía cinética del sistema (bala+péndulo) inmediatamente después del choque es 1/2(m+M)v2. La relación es:

Por ejemplo, si la bala tiene una masa m=5[gr] y el bloque tiene una masa M=2000[gr], la cantidad de energía cinética que queda es apenas de 0.25% aproximadamente; más del 99% se convierte en otras formas de energía, por ejemplo calor y sonido.

El movimiento del centro de masa de dos partículas no es afectado por su choque, por que el choque no cambia la cantidad de movimiento del sistema de dos partículas, sólo cambia la distribución de la cantidad de movimiento entre las dos partículas. La cantidad de movimiento del sistema se puede escribir así P=(m1 +m2 )vcm. Si no obran fuerzas externas sobre el sistema, entonces es constante antes y después del choque y el centro de masa se mueve con velocidad constante todo el tramo.

Si escogemos un sistema de referencia ligado al centro de masa entonces en este sistema de coordenadas del centro de masa vcm =0 y P=1. Hay una gran simplicidad y simetría al describir los choques con respecto al centro de masa, y se acostumbra hacerlo así en física nuclear. Para decir que los choques sean elásticos o inelásticos, se conserva la cantidad de movimiento y tomando coordenadas referidas al centro de masa, la cantidad de movimiento total es igual a cero. Estos resultados son válidos en dos y en tres dimensiones lo mismo que en una porque la cantidad de movimiento es una cantidad vectorial.

Como ejemplo, consideremos el choque de frente entre dos partículas m1 m2. Sea m2=3m1, y consideremos a m2 en reposo, de modo que u1 es igual a cero en el sistema de coordenadas del laboratorio. La cantidad de movimiento total de las dos partículas es simplemente la de la partícula incidente m1u1 de modo que:

Después del choque m1 tiene una velocidad v1=1/2u1, y m2 tiene una velocidad v2=1/2u1. La cantidad de movimiento total de las dos partículas es la misma que antes del choque, y el movimiento del centro de masa no se altera.

  Un choque elástico referido al sistema de coordenadas del laboratorio.

  El mismo choque referido al centro de masa.

Sección eficaz de choque.-

Cuando se conoce la fuerza de interacción de las partículas que chocan, podemos encontrar el movimiento resultante directamente a partir de las condiciones iniciales. La misma ley de las fuerzas en una cuarta ecuación que se aplica al movimiento. El parámetro de choque es entonces una condición inicial que debe especificarse. Ejemplos que frecuentemente se encuentran en física son choques entre cuerpos astronómicos, tales como el movimiento de un cometa cerca de un planeta, en el cual la fuerza es la conocida fuerza de gravitación, o choques entre partículas eléctricamente cargadas, en las cuales la fuerza es también la conocida fuerza de Coulomb entre partículas cargadas. Esas fuerzas son de gran alcance, de modo que los cambios en el movimiento de unos cuerpos que chocan y que están sometidos a tales fuerzas de interacción son graduales y no repentinos como lo son los choques por contacto.

Los parámetros de impacto están distribuidos al azar y debemos analizar la interacción estadísticamente.

El área de la hoja expuesta al haz es A y el espesor de la hoja ............ Si hay n partícula blanco por unidad de volumen de la hoja el número total de partículas blanco disponibles es nA s. Si cada partícula blanco ofrece una reacción eficaz al choque, el área general disponible para el choque es (nA s) . Por consiguiente la probabilidad de que ocurra un choque cuando una partícula pase por la hoja es la relación de esa área al área total de la hoja expuesta al haz, o sea n s . Para determinar o experimentalmente medimos la fracción de las partículas incidentes que chocan e igualamos n s . Esto es, N/N es igual a n s. Conociendo el espesor de la hoja y la densidad de la partícula blanco obtenemos .

En vez de la sección eficaz para que ocurra un choque cual quiera, llamada sección eficaz total, a menudo estamos interesados en la sección eficaz para ciertas clases especiales de choque. Por ejemplo, en choques moleculares la molécula inicialmente puede ionizar la molécula blanco; pueden simplemente pasar energía a la molécula blanco; pude disociar la molécula blanco, y así sucesivamente. Para obtener la sección eficaz par una clase especial de choque, simplemente medimos la fracción de la partícula incidente que hace esta clase de choque con las partículas blanco. La sección total eficaz de choque es la suma de todas esas secciones eficaces parciales.


No hay comentarios:

Publicar un comentario